

Answer the questions below then check your answers.

- 1. Define the term electronegativity.
- 2. What is the difference between a covalent bond and a polar covalent bond?
- 3. In order for a bond to be polar covalent approximately how large should the differences in the electronegativity values for the atoms involved in the bond be?
- a. What happens to the polarity of a bond as the difference in electronegativity values for each atom in the bond increases?
- 4. What do the symbols δ^+ and δ^- next to an atom in a bond indicate? What is a dipole?
- 5. Explain why a molecule which has polar covalent bonds may not in fact be a polar molecule and not possess a dipole moment.
- a. What is a dipole moment?

6. For each molecule below indicate the presence of any dipoles present by adding the symbols for δ^+ and δ^- to show the presence of any bond dipoles in the molecule. Also decide if the molecule is polar or not.

Molecule	Formula	Bond dipoles	ls this a polar
		shown	molecule?
	Water H₂O		
	Chlorine Cl ₂		
	chloromethane HCCl₃		

Molecule	Formula	Bond	Is this a polar
		dipoles	molecule?
		shown	
	Phosphorus		
	trifluoride		
	PF-		
	Carbon		
	dioxide		
	CO_2		
	002		
F	Sulfur		
-	hexafluoride		
	SF6		
F			
F F			
Ē			

Answers

1. Define the term electronegativity.

Power or ability of an atom in a covalent bond to attract electron density towards itself.

- 2. What is the difference between a covalent bond and a polar covalent bond? In a covalent bond the electrons are shared equally but in a polar covalent bond the electrons are shared unequally.
- 3. In order for a bond to be polar covalent approximately how large should the differences in the electronegativity values for the atoms involved in the bond be?

Between 0.5–1.9 as a good working approximation for difference in electronegativity values for a bond to be polar covalent. Less than 0.5 and its likely to be covalent, more than 1.7–1.9 (depends on the scale used – but figures are a guide only) and its likely to be ionic

- a. What happens to the polarity of a bond as the difference in electronegativity values for each atom in the bond increases?
- 4. What do the symbols δ⁺ and δ⁻ next to an atom in a bond indicate? What is a dipole? These symbols indicate that the molecule has charged ends or a dipole. If the molecule is symmetrical then all the dipoles will cancel out and the molecule will be non-polar, however if it is not symmetrical then the molecule will be polar and have a permanent dipole.
- 5. Explain why a molecule which has polar covalent bonds may not in fact be a polar molecule and not possess a dipole moment. Answered in Q4.

a. What is a dipole moment?

In a polar covalent bond there is a separation of charge. This produces a bond dipole. The size of the dipole produced depends on how far the charges are separated and how much charge is separated, more charge and greater distance gives larges dipoles. The dipole moment of a molecule is simply the addition of all the bond dipoles to give the overall molecular dipole.

6. For each molecule below indicate the presence of any dipoles present by adding the symbols for δ^+ and δ^- to show the presence of any bond dipoles in the molecule. Also decide if the molecule is polar or not.

Molecule	formula	Bond dipoles	Is this a polar
		shown	molecule?
	Water H20	Hydrogen atoms will be δ+ and	Yes this molecule is polar, the
	1120	the oxygen atom	centres of
		will be δ-	positive and
			negative charge
			are not
			overlapping, this
			molecule has a
			dipole moment.
		Bond is	Molecule is non-
	Chlorine Cl ₂	covalent, no	polar.
		dipoles produced	
		here.	

		C-H bond is	Yes this molecule
\sim	chloromethane	non-polar, small	is polar, the
	HCCl₃	difference in	centres of
		electronegativity	positive and
		here between	negative charge
		atoms. C-Cl	are not
		bonds are polar,	overlapping, this
		C will be S⁺ and	molecule has a
		Cl atoms will be	dipole moment.
		$\delta^{\scriptscriptstyle +}$	

Molecule	Formula	Bond	Is this a polar
		dipoles	molecule?
		shown	
	Phosphorus	P-F bond is	Molecule is
	trifluoride	polar, P	not
	PF₃	will be $\delta^{\scriptscriptstyle +}$	symmetrical,
		and F	will be polar
		atoms will	molecule.
		be δ-	
	Caulaa	C=O ka da	Malagula is
	carbon	c=0 bonas	MOIECUIE IS
	aloxíae	are polar,	symmetrical,
	CO_2	C will be o ⁺	centers of
		and O will	positive and
		be d-	negative
			charge on
			bond dipoles
			are directly
			on top of each
			other.
F	Sulfur	S-F bond is	Molecule is
T	hexafluoride	polar, P	highly
	SF ₆	will be $\delta^{\scriptscriptstyle +}$	symmetrical,
		and F	centres of
		atoms will	positive and
		be δ−	negative charge
			dinoles lie
			directly in the
F			centre of the
			sulfur atom.